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Abstract

Note: Figures are at the End of the Document

In programming, reliability requires an extensive testing phase. Spreadsheet development, which has about the error rate as program development, also needs to be followed by an extensive testing phase if spreadsheets are to be reliable. In this study, 60 undergraduate MIS students code–inspected a spreadsheet seeded with eight errors. They first inspected the spreadsheet working alone. They then met in groups of three to reinspect the spreadsheet together. Efforts were made to prevent hasty inspection.

Individual code inspection, consistent with past studies of both spreadsheet and program code inspection, caught only 63% of the errors. Group inspection raised this to 83%. However, the group phase never found new errors; it merely pooled the errors found during the individual phase by the three members. One group even “lost” an error found during the individual phase. This raises the question of whether a group code inspection phase is really necessary. Other findings were that subjects were overconfident when inspecting alone, that certain types of errors are especially difficult to detect, and that the benefits of the group phase is greatest for these difficult-to-detect types of errors.

Introduction

The Importance of Spreadsheets

Spreadsheeting is enormously important in organizations. Based on sales figures, tens of millions of managers and professionals around the world create hundreds of millions of spreadsheets each year. At least some of these spreadsheets are very large (Floyd, Walls, & Marr, 1995; Hall, 1996) and complex (Hall, 1996). Most importantly, many mission-critical corporate decisions are guided by the results of large and complex spreadsheets.

Spreadsheet Error

If organizations are to depend on the results of spreadsheets, then these spreadsheets must be very accurate. Such accuracy, unfortunately, is very difficult to achieve in spreadsheeting.

In programming, errors (faults) in a program may be in sections of code that are never or only rarely executed in practice. So the failure rate may be far lower than the fault rate. In spreadsheeting, however, almost every numerical and formula cell is on a computational cascade leading to a bottom line value. So almost any cell error in a spreadsheet will lead to an incorrect bottom-line value.

Accuracy in large spreadsheets requires an extremely low error rate.. For instance, if a large spreadsheet with a thousand or more cells is to be error-free, then the average error rate in development must be better than one error in every thousand cells. If most such large spreadsheets are to be error-free, in turn then the development error rate in general must be ten to a hundred times lower.

Such low human error rates, however, would be unprecedented. Data on human cognitive errors (Panko, 1997b) from a broad spectrum of activity domains ranging from typing to mathematical problem solving and programming indicate that it would be more reasonable to expect something on the order of one error in every hundred cells. In programming, for instance, we have data from thousands of real-world programs showing that a typical rate of errors (faults) is around five in every hundred lines of non-comment source code (Panko, 1997b).

Indeed, in recent years, several studies have specifically examined errors in spreadsheet development and auditing (Panko, 1997b). These studies include over a dozen laboratory experiments on over a thousand subjects.  They also include four field audits of more than 300 real-world spreadsheets. Every study, without exception, has found error rates much higher than organizations would wish to tolerate. In particular, studies that have measured the cell error rate (CER)—the percentage of numerical and formula cells containing errors—have always found CERs in excess of one percent. As just noted, this is about what one would expect from other cognitive research on human error rates (Panko, 1997b).

An Emerging Theoretical Framework for Human Error

The convergence of error rates across cognitive activities is not surprising. There is an emerging theoretical framework that explains both correct performance and errors across a broad spectrum of cognitive tasks (Baars, 1992; Reason, 1990). It explains at least the main types of errors that people make (Baars, 1992; Reason, 1990).

In essence, the framework shows that although human beings can think very quickly (Reason, 1990) and can juggle multiple tasks (Flower & Hayes, 1980), we are only able to achieve human performance levels because our brains take a number of “shortcuts” that inevitably lead to occasional errors (Reason, 1990). In other words, a small error rate is an inevitable aspect of human cognition, not merely a result of carelessness, rushing, or other blameful actions. Although we do not err frequently, we all err a few percent of the times we take cognitive actions.

Unfortunately, the emerging framework does not predict specific human error rates. Although empirical studies are highly convergent in the error rates they have found (Panko, 1997a), error rates must be measured in each new cognitive domain being studied. In spreadsheeting, the focus to date has been the measurement of development errors. It is now time to focus more specifically on expanding the limited research that has been done on errors in spreadsheet testing.

Unfortunately, existing error frameworks focus primarily on human error production. In error detection, which is more directly relevant to testing, the theoretical situation is much weaker. Reason (Reason, 1990) put it this way: “Despite the obvious importance of the topic, the psychological literature contains very little in the way of empirical studies of error detection or of theories to explain the process by which people catch and correct errors made by themselves or others (p. 148).”

Code Inspection

When a programmer finishes a program module, he or she knows that it almost certainly contains errors (faults) and indeed probably contains errors in about 5% of all lines of code (Panko, 1997a). This is far too high. So development is followed by an aggressive testing phase that may take up to a third of total development time and effort.

One method of program testing is execution testing. Known data are run through the module. The tester then compares the program’s output with known results. In spreadsheeting, unfortunately, it is common for the spreadsheet to model more complex situations than have ever been modeled before. So it is uncommon to have the known data and results required for execution testing.

Another popular method of program testing is code inspection, in which the program’s code is examined in detail to find errors. Code inspection in programming can catch up to about 80% of all errors in real-world programs (Panko, 1997a).

Code inspection is a promising area to explore because code inspection is rare in operational end user spreadsheet creation (Cragg & King, 1993; Hall, 1996). If we can demonstrate that code inspection is effective in spreadsheet testing, this might be able to motivate the expansion of code inspection in real-world spreadsheet creation.

Code Inspection in Programming

Inspection in programming has a long history, dating back to the early work of Fagan (Fagan, 1976). There generally are two types of inspection, namely the inspection of requirements and design documents and the inspection of actual code. There may also be two types of code inspection—one at the module level and one at the assembled system level. So inspection may occur multiple times over the systems development life cycle.

One tenet of most code inspection methodologies is the collection and publication of data on error rates. Data from many code inspections have been made public (Panko, 1997a), including studies that have varied procedures to determine the impacts of different procedures on yield rates (Panko, 1997a). More recently, there have been a number of experiments that have systematically varied procedures under highly controlled conditions (Basili & Selby, 1986; Johnson & Tjahjono, 1997; Myers, 1978; Porter, Votta, & Basili, 1995; Porter & Johnson, 1997; Porter, Sly, Toman, & Votta, 1997; Porter & Votta, 1994, May 16-21).

The research has found consistently that code inspection can catch many of the errors in a document or program but not all of them. As noted above, for real-world code inspection, group detection rates of around 80% have been claimed (Panko, 1997a). Some laboratory studies have had lower group detection rates (Johnson & Tjahjono, 1997; Porter et al., 1995; Porter & Johnson, 1997). Given the error rates seen in spreadsheet development studies (Panko, 1997b), however, even the lowest gains seen in experiments would be welcome.

The “Standard Check” in Other Fields

Although code inspection was developed in programming, the need for a systematic error checking phase has been documented in other areas of human cognition. When Allwood (Allwood, 1984) studied statistical problem solving, he noted that subjects often stopped working because they had a definite or vague suspicion that an error had occurred. At other times, however, they stopped to check their work even when they did not suspect an error. Allwood called this non-prompted error search a “standard check.” He found that subjects caught almost no high-level knowledge-based errors outside of standard check episodes.

In observational studies of writing, furthermore, Hayes and Flower (Hayes & Flower, 1980) noted that writers often stopped to “review” what they had written, checking systematically for errors. These reviews often occurred during the writing process itself, but there were also systematic reviews after drafting work.

In programming, it is likely that programmers often engage in systematic standard checks during the actual development of the program, although close studies in programming have not focused on this issue. Code inspection, then, is like reviewing a draft document.

Two-Phase Code Inspection in Programming

In programming, almost all methodologies require that inspection be done by groups rather than by individuals. The reason is that individual error detection rates are too low. The discoveries of several individuals need to be pooled to yield acceptable yield rates.

Group code inspection methodologies usually specify two phases. In the first phase, the individuals in the team study the module working alone. In the next phase, they meet as a group.

Different methodologies specify different tasks in the two phases. Fagan (Fagan, 1976), for instance, suggested that individuals should merely familiarize themselves with the module in the first phase. Only in the face-to-face team meeting would error discovery be the key goal. Other methodologies have the inspectors focus on error detection in the first phase, so that the focus of the team meeting is the compilation of errors, although new errors are also sought during these face-to-face meeting phases (Porter & Johnson, 1997; Porter et al., 1997).

The Hicks Study

In spreadsheeting, only one field audit has used something like a standard two-phase team code inspection methodology. Hicks (Hicks, 1995) described a three-person code inspection of a 3,850-cell module of a larger capital budgeting spreadsheet that was about to become operation at NYNEX. Although this spreadsheet was very large compared to recommended maximum sizes for code inspection in programming, the spreadsheet had a good deal of redundancy because of formula copying across columns. This inspection found errors in 1.2% of the cells, which is similar to the cell error rate in laboratory spreadsheet development experiments (Panko, 1997b) and in programming (Panko, 1997a).

The Galletta Research on Spreadsheet Code Inspection

Also in spreadsheeting, Galletta and his colleagues (Galletta et al., 1993; Galletta, Hartzel, Johnson, & Joseph, 1996; Galletta, Hartzel, Johnson, & Joseph, 1997) have conducted two laboratory experiments in spreadsheet auditing, which is similar to code inspection except in one important way. There is only an individual phase.

In these two experiments, subjects caught only about half of all seeded errors in the spreadsheets they inspected. The first study (Galletta et al., 1993) specifically examined whether spreadsheet development experience improved error-finding. The data showed that experienced spreadsheet developers finished more quickly than inexperienced subjects but did not find more errors than novices.

Panko and Sprague (Panko & Sprague, Forthcoming) also found low error detection rates in a study using a similar methodology. They also found no significant differences in spreadsheet development error rates across undergraduates, MBA students with little spreadsheet development experiments, and MBA students with substantial spreadsheet development experience.

The experience by Galletta and his colleagues (Galletta et al., 1993; Galletta et al., 1996; Galletta et al., 1997) prompted us to undertake a new study of spreadsheet code inspection. Given the importance of two-phase inspection in programming, however, we decided to see if a two-phase individual–group code inspection methodology would be more effective than single-phase auditing.

In addition, given the lack of differences between undergraduates and experienced developers in past studies, we decided to use an undergraduate sample in our study.

Speed Versus Accuracy

In their work, Galletta and his colleagues (Galletta et al., 1993; Galletta et al., 1996; Galletta et al., 1997) emphasized both accuracy and speed in their instructions. Speed has the obvious benefit of reducing cost and must be considered. 

However, inspection studies in programming consistently find that error detection rates fall as inspection speed increases.  For example, Basili and Perricone (Basili & Perricone, 1993) examined FORTRAN programs in a software engineering laboratory. When the inspection rate was limited to 50 lines of code per hour, the inspectors found errors in 1.6% of all statements. When the inspection rate tripled to 150 lines per hour, however, they only found errors in 1.2%. When the inspection rate passed 200 lines per hour, furthermore, they only found errors in 0.6% of all lines of code. In another study, Russell (Russell, 1991) 1991 looked at inspection rates of 150, 450, and 750 lines of code per hour. The respective error rates discovered were 3.7%, 1.5%, and 0.8%. Ebenau and Strauss (Ebenau & Strauss, 1994) found that the difference in error rates found in "nonhasty" and "hasty" code inspections were 2.0% and 1.3%, respectively. Weller (Weller, 1993) presented data on three-person code inspection teams. He found that at less than 200 lines per hour, the detected error rate was 2.4%. Above 200 lines of code per hour, it fell to 2.0%. Four-member teams did somewhat better, but their detected error rate still fell from 3.1% to 2.5% when the inspection speed passed 200 lines of code per hour. More generally, speed–accuracy tradeoffs have been seen in other human cognitive domains (MacKay, 1982).

As there may be a similar pattern in spreadsheet inspection, it may be good to emphasize only accuracy in some studies until the issue can be resolved empirically. In our study, for instance, subjects were given minimum inspection times, to prevent them from rushing. In the group phase, our minimum time was too long to enforce, but even then, subjects worked slowly and carefully.

Types of Errors

There are two basic types of errors (Panko & Halverson, 1996). Quantitative errors produce incorrect bottom line values. Qualitative errors, in turn, are flaws in the spreadsheet design that may lead to errors in the future but do not make the current bottom line values incorrect. In our study, we focus only on quantitative errors. When we use the term “error” by itself, we mean quantitative errors.

People make various types of quantitative errors when they work. Several error researchers have produced useful taxonomies of error types (Allwood, 1984; Norman, 1997; Rasmussen, 1974). In our study, we adopted Allwood’s (Allwood, 1984) taxonomy, which divides errors into mechanical, logical, and omission errors. Panko and Halverson (Panko & Halverson, 1996) note that this taxonomy has proven useful in spreadsheet development experiments.

· Mechanical errors are simple slips, such as mistyping a number or pointing to the wrong cell when entering a formula.

· Logic errors are “thinking errors.” They include having the wrong algorithm for creating the formula or having the right algorithm but creating a formula that does not correctly implement the process.

· Finally, omission errors are leaving something out of the spreadsheet that is in the problem statement . Omission errors seem especially resistant to discovery (Allwood, 1984), so we would expect the detection rate for omission errors to be lower than those of mechanical or logic errors.

We need to consider error type in inspection research because Allwood (Allwood, 1984) and others have shown that commission and detection rates vary by type of error. So if we examine error rate by error type, we should get a better picture of error detection in inspection than we would if we simply measured the gross error detection rate. We need to know specifically which types of errors are caught well in code inspection and which types are relatively immune to inspection detection.

Unfortunately, the task that we adapted for our study (which is discussed later) is not easily described in terms of the mechanical-logic-omission trichotomy. While omission errors were introduced unambiguously, it was not possible to separate mechanical errors from logic errors. Consequent, we only looked at two types of errors—omission errors and formula errors.

Formula Length

We also focused on the length of cell formulas. This seemed prudent, because in a study of proofreading, Healey (Healey, 1980) compared error detection rate with word length. His subjects searched a document for nonword spelling errors, that is for misspellings that were not valid words themselves. Healey found that for short words of two to four letters, the error detection rate was very high, ranging from 92% to 99%. However, for words of length five, it fell to 77%, and for longer words, the detection rate was only 72%. If people find it difficult to detect simple nonword spelling errors in longer words, then it seems plausible that people will find the detection of errors in longer formulas difficult.

Overconfidence

A final concern in our study was overconfidence. In past studies of spreadsheeting, subjects have been highly confident in their results, even when their error rates were quite high (Brown & Gould, 1987; Cragg & King, 1993; Davies & Ikin, 1987; Floyd et al., 1995; Panko & Sprague, Forthcoming). Although disturbing, this is not surprising, because humans tend to be overconfident across a wide variety of situations (Camerer & Johnson, 1991; Lichtenstein, Fischoff, & Philips, 1982; Plous, 1995; Shanteau, 1992; Wagenaar & Keren, 1986). Overconfidence is a concern because we tend to act on our metacognition (beliefs about what we know) (Metcalfe & Shimamura, 1994). In particular, our stopping rules for when we will cease searching for errors (Rasmussen, 1990) are likely to be shorter if we are overconfident.

Overconfidence, by the way, is not just a problem of novices. Numerous studies (Johnson, 1988; Shanteau, 1992) have shown that even experts are often badly overconfident. However overconfidence is not always the case for experts. Shanteau (Shanteau, 1992) found that a common denominator among professions that were not overconfident is that they both received systematic feedback and constantly analyzed feedback data for individual cases. Other studies (Lichtenstein & Fischoff, 1980; Plous, 1995) documented the importance of feedback information in laboratory settings. Code inspection, by confronting the programmer or spreadsheet developer with specific frequencies of error, should be able to provide that kind of needed feedback. Unfortunately, as noted above, spreadsheet developers rarely conduct formal code inspections, so they do not receive that type of feedback.

Research Goals

Figure 1 illustrates the hypotheses we selected as our research goals. It also shows the results of significance testing described later in the paper.

Figure 1: Hypotheses and Results
Individual and Group Error Detection

The main research goal, of course, was to determine the percentage of errors that subjects would detect. We wished to measure the percentage of errors found by individuals. We also wished to measure the extent to which groups found more errors than individuals.  This led to hypothesis H1.

H1
Groups will detect more errors per spreadsheet than will individuals.

To test this hypothesis, we compared the number of errors per spreadsheet discovered by individuals and groups using a one-tail t-test. We used the traditional 0.05 confidence level for this and for other hypothesis tests.

Types of Errors

We also wished to determine the percentage of subjects detecting different types of errors. This led to two hypotheses, H2 and H3.

H2
Formula error detection rates for individuals will be higher than omission error detection rates for individuals.

To test H2, we counted each error for each individual as a 0 if it was not discovered or as a 1 if it was discovered. We then compared the total distribution for omission error detections across subjects (120 cells) with the total distribution for formula errors (240 cells), using a one-tail t-test.

H3
Formula error detection rates for groups will be higher than omission error detection rates for individuals.

We tested this hypothesis in the same way we tested H2, using group data.

Formula Length

As noted earlier, we were concerned with the length of the formulas, in terms of arithmetic operations and cell references because of reduced error detection rates when people proofread long words. This led to H4 and H5.

H4
Formula errors will be detected more frequently in short formulas (with four or few elements) than in long formulas for individuals.

H5
Formula errors will be detected more frequently in short formulas (with four or few elements) than in long formulas for groups.

These hypotheses were tested in the same way that H2 and H3 were tested.

Overconfidence

We were also concerned with overconfidence, given the broad range of studies that have measured overconfidence and the fact that overconfidence can cause us to limit our search for errors.  This led to hypotheses H6 and H7.

H6
For subjects working alone, the estimated percentage of errors found will be greater than the actual percentage of errors found.

H7
For subjects working in the group phase, the estimated percentage of errors found will be greater than the actual percentage of errors found.

To test this hypothesis, we compared the estimated percentage of errors to the actual percentage of errors using a one-tail paired t-test.

Method

The Code to be Inspected

The spreadsheet that subjects inspected was adapted from one developed by Galletta et al. (Galletta et al., 1996; Galletta et al., 1997). Figure 2 shows the spreadsheet used in our study. As in one treatment in Galletta et al. (Galletta et al., 1997), the printed form had both the result and the formula in each formula cell.

Figure 2: The Spreadsheet with Seeded Errors

For our experiment, we modified their spreadsheet in three ways. First, we added two omission errors (the original spreadsheet had no omission errors). Second, we make it look like an Excel spreadsheet instead of the Lotus spreadsheet it was originally. Third, we dropped two errors, namely the treatment of starting and ending cash in the totals column. A pretest of sixteen subjects found that students who made the two errors believed that they were correct even after the correct procedure was told to them. In the end, we had a spreadsheet seeded with two omission errors, with four errors in formulas with three operations and cell references, and two more errors in formulas with six and nine operations and cell references.

Sample

The study used 60 third-year and fourth-year undergraduate MIS majors taking networking classes. Subjects received extra credit for participation. All had previously taken a class that taught spreadsheet skills. None had trouble understanding the spreadsheet’s formulas.

The use of student subjects is always a concern. However, as noted earlier, two previous studies have suggested that students should be fairly good surrogates of experienced spreadsheet developers. First, in their code inspection study, Galletta et al. (Galletta et al., 1993) found that inexperienced and experienced spreadsheet developers had very similar error rates. Second, Panko and Sprague (Panko & Sprague, Forthcoming) compared spreadsheet development for undergraduate MIS majors, MBAs with little spreadsheet development experience, and spreadsheet developers with extensive development experience. They found that differences between groups were neither statistically significant nor of practical importance. Finally, our detection rate during group code inspection (83%) was very similar to the 80% yield rate found in program code inspection by experienced programmers inspecting operation programs in industry (Panko, 1997b).

Assignment to Groups

Subjects were scheduled to appear in one of three time periods. Subjects could select the time period. Subjects were assigned to groups randomly after arrival.

Process

Initial Steps

After the subjects arrived, the author explained the purpose of the experiment, namely to see if the subjects would be able to catch all of the seeded errors and, if not, how many they would be able to catch. Subjects were then given a questionnaire about themselves and their spreadsheeting experience. They were also given five minutes of instruction in code inspection, including the need to relate the problem statement to the spreadsheet and the need to examine every cell and every arithmetic operation and cell reference in every cell. They were also told that if they rushed, they would miss many errors and so must work slowly. They were told that there would be two phases: an individual phase and a group phase. After a question period, they filled out agreements to participate.

Individual Code Inspection Phase

In the first (individual phase), subjects were given a booklet with the task statement and sheets on which to record the errors they found and their correction for each error. A correction was requested to ensure that they understood the nature of the error. Subjects were told that they would have to take a full 45 minutes to do the code inspection, and that if they finished early, they must go back and look for more errors.

Subjects noted their starting times. At the end of 45 minutes, they recorded their stopping times. They estimated, using a multiple choice scale consisting of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, and 100%, what percentage of the errors in the spreadsheet they had discovered.

Group Code Inspection Phase

At the end of the individual code inspection phase, subjects took a ten minute break. They were then given the group code inspection task. They were told, consistent with programming code inspection practice, that one person would be the recorder of errors and that another person would be the reader, who would go through the program cell by cell, announcing its purpose and asking members to check it for errors. They were told that they could refer to their list of errors found during the individual inspection phase but should not limit themselves to this. They should again go through the model cell by cell, this time as a group. The groups worked in separate breakout rooms.

The experimenter went constantly from room to room, enforcing the requirement to inspect the model cell by cell and reminding subjects to use the full 45 minutes allotted to the task. In practice, this proved impossible to enforce. All groups essentially stopped at 35 to 40 minutes of real work, doing desultory checking afterward. They felt that they had gone through the model slowly and carefully and that additional time was a waste of time. They did appear to be working slowly and deliberately while they did work.

At the end of the period, subjects were told to estimate independently the percentage of errors they thought their group had found.

Analysis of Errors

To analyze the errors, the author examined the error detections/corrections against a list of eight seeded errors. Each individual and each group was scored as detecting or not detecting each error.

We use parametric statistics to report the results. We also did the analysis with non-parametric statistics. However the probabilities were almost identical, and most readers are more familiar with the parametric t-tests reported in this paper.

Results

Comparison with Past Results

Overall, subjects working alone detected 63% of all seeded errors. This is a higher percentage than Galletta et al. (Galletta et al., 1996; Galletta et al., 1997) found in their similar task. This difference may be due to modifications to the task. However the difference between our yield rates and those of Galletta et al. (Galletta et al., 1996; Galletta et al., 1997) was modest. In addition, our detection rates were fairly close to error detection rates found in several previous studies of individual program code inspection with experienced programmers and students (Basili & Selby, 1986; Myers, 1978). At the same time, our detection rates were higher than those seen in other programming inspection studies (Porter & Johnson, 1997).

Table 1 gives additional detail on error detection rates for individual questions. It shows the percentage of individuals detecting each error, the percentage of groups detecting each error, and the percentage gain in group detection compared to individual detection for each error. The table also shows the total percentage of errors that subjects estimated they detected and the degree to which estimates exceeded actual yields.

Table 1: Error Detection Rates by Error
Omission versus Formula Errors

As expected, subjects had a difficult time detecting the two omission errors. When working alone, only 30% and 35% of the subjects detected the two errors. This was far below their formula error detection rates, which ranged from 47% to 85%. H2 was supported at beyond the 0.001 probability level.

During the group phase, the two omission errors were also detected less frequently than were formula errors, both omission errors being detected by only 55% of the groups. H3 was supported at beyond the 0.001 probability level.

Longer and Shorter Formula Error Detection Rates

For individuals working alone, lower error detection rates were also seen for the two formula errors that had more than three operations and cell references. One was detected by only 47% of the subjects, the other by only 58%. In contrast, the four formulas with only three operations and cell references were detected by an 82% to 88% of all individuals. The difference in detection rates between errors with three elements and those with six or more elements was significant, with a probability below.0001. H4 was supported.

In the group phase, three of the four short formulas were detected by all the groups, and remaining one was found by 95%. The average detection rate for all four errors in short formulas was 99%. For the two longer-formulas errors, however, the group detection rates were only 70% and 90%. H5 was supported at beyond the 0.001 confidence level.

Group Versus Individual Code Inspection Overall

Group code inspection overall, as expected, did better than individual code inspection. Groups of three found 83% of all errors, while individuals found only 63%. This was significantly better than individual detection at the .009 level, so H1 was supported.

Six of the eleven groups caught all errors, and half found at least 7 of the 8. This indicates a significant ceiling effect, which limits statistical significance testing. At the same time, real-world group inspection should catch a large majority of all errors to be successful, so to use a task without a ceiling effect would also be problematic. In addition, a ceiling effect reduces significance levels, so its presence actually strengthens our confidence in the significant results shown in Figure 1.

Groups recorded 31% more errors than individuals, but this gain was not uniform across all types of error. For errors in longer formulas, the gains were 50% and 54%. For omission errors, the gains were 57% and 83%. So the group phase is most successful precisely for the errors that individuals detect the least frequently. Although this result is dictated by probability, it is something to keep in mind when considering the value of group inspection.

On closer examination, however, groups did not report any errors not previously reported by their group members during the individual phase. In other words, the face-to-face code inspection did not find anything more than the subjects would have found had they merely collected the errors found by individuals during the first phase. In fact, one group even failed to report an error found by one of its members during the individual phase. So the gain from “groupwork” came simply from pooling the different errors detected previously by the three members and was not even perfectly successful at that.

This lack of gain during the group meeting phase raises the issue of whether a face-to-face meeting is really needed. This issue has been discussed considerably in the programming literature (Porter et al., 1997; Votta, 1993). At the same time, however, someone must collect the errors recorded during the individual code inspection phase. The groups at least recorded all but one error. Would other ways of collecting errors be as good?

Overconfidence

As expected, subjects were overconfident when working alone. While subjects found only 63% of the errors, they estimated that they would find 73%. The difference between estimates and reality was significant at the .004 level, so H6 was confirmed. More specifically, 61% overestimated the percentage of errors they found, while only 27% were under-confident.

For groups, subjects were only overconfident by four percentage points. So H7 failed, although its probability was close to significant at 0.056.

In overconfidence studies, one of the most widely reported patterns is the hard-easy effect (Bolger & Wright, 1992; Dunning, Griffin, Milojkovic, & Ross, 1990; Lichtenstein et al., 1982; Pulford & Coleman, 1996). When performance is high, confidence is also high, and overconfidence is low or nonexistent. However, as task difficulty increases, so that performance drops, confidence usually either stays constant or decreases much less than performance. In other words, overconfidence increases as performance decreases. Our subjects’ answers definitely displayed this pattern. With some exceptions, subjects who found most or all errors had high confidence and were not overconfident. However, confidence generally remained high for subjects who found fewer errors. Overall, then, subjective estimates of performance in spreadsheet code inspection should not be taken as indicators of likely performance.

Conclusion

This study continues the pattern seen in past studies of spreadsheet error—namely that spreadsheet errors occur at about the same rate as programming errors. Most past studies looked at errors during development or during one-phase (individual) code inspection. This study extends the research to two-phase individual–group code inspection, in which members of a team first inspect the spreadsheet individually and then meet as a group to inspect it again.

Did teamwork help? The short answer is that it did. During the group phase, teams of three found 83% of all errors, while individuals working alone only found 63% percent. This is a 31% improvement.

More importantly, the group phase was particularly effective at finding errors that individuals found difficult to detect, including omission errors and errors in longer formulas. For such detection-resistant errors, we found improvements of 50% to 83% for group inspection compared to individuals working alone. In general, more attention should be given to detection rates for different types of errors in all code inspection studies. The fact that the group phase does little better than individual inspection for easily detected errors tends to overshadow a potentially critical role in finding difficult errors if one only looks at gross error rates.

Although the gain from individual detection rates to group detection rates was impressive, it was only as good as we could have done by pooling the errors found by its members during the individual phase. The groups did not discover any new errors during their face-to-face meeting, despite reinspecting the spreadsheet cell by cell.  In one case, a group even failed to record an error found by one of its members during the individual phase. This pattern of little or no gain and actual loss in the group phase has also been seen in some studies of programming code inspection (Porter et al., 1995). Our findings suggest, consistent with past programming research, that a group phase may not be necessary. We may be able to do something like nominal group analysis, in which we merely compile a combined list of errors found by individuals. Tjahjono (Johnson & Tjahjono, 1997) found in his dissertation that tools like nominal group analysis do, in fact, appear to work well.

However, the fact remains that someone has to select the final list of errors. In experiments with seeded errors, the experimenter can do this easily. In the real world, things are not likely to be as simple. A simple pooled list of individual errors would contain numerous false positives—identified “errors” that are not really errors. These false positives would waste time to fix and in some cases would actually be wrong, introducing new errors. Obviously, the value of the group phase is a matter worth pursuing in future research.

Another broad consideration is that even team code inspection failed to catch 17% of the simple, easily demonstrable errors seeded into our spreadsheet model. If we had included Cassandra logic errors, (Panko & Halverson, 1996), which are difficult to prove to be errors even if identified, face-to-face groups might have rejected such errors even if they were presented by a group member. This rejection of Cassandra errors by a group has been seen previously in development research (Panko & Halverson, 1997).

Finally, although a 17% miss rate for groups is better than the 37% miss rate for individuals, it will still leave many errors in larger spreadsheets. Even the fact that a ceiling effect limited the gain from individual to group work does not make code inspection look like the mythical silver bullet that will remove all errors. Code inspection looks promising, but it does not look like a cure for spreadsheet error, any more than it has proven a cure for errors in programming.

Moreover, as just noted, we found that group code inspection yield rates are even worse for certain types of errors. In this study, we specifically looked at omission errors and at errors in longer formulas. Consistent with research done in other areas, the group’s success in finding these two types of errors was only 55% and 80%, respectively. Furthermore, the study did not look at logic errors, some of which, we have just seen, groups find very difficult to agree upon even if they are detected by one member (Panko & Halverson, 1997). Lower detection rate for certain types of errors suggests that code inspection is not as good as its overall success rate indicates.

This study looked at several variables that we hope will be considered in future code inspection research. First, our study examined overconfidence. If people are overconfident, they may stop their error detection work too soon, both overall and while inspecting individual cells (or lines of code). Our subjects were indeed moderately overconfident, as expected from past research on overconfidence. Although the overconfidence was only moderate, we should see if reducing overconfidence by giving detailed feedback will be able to improve error detection.

Overall, group code inspection did substantially better than individual code inspection, suggesting that it should be used in the field. In real-world spreadsheeting. However, implementing a code inspection discipline is likely to be very difficult. Spreadsheet development usually is performed not by professionals in development but by ordinary managers and professionals in functional areas, for whom spreadsheet development is a small part of their overall job. Potential testers with sufficient functional knowledge to aid in the inspection would also have to be functional professionals who would have to take away time from their “central work.” These organizational considerations, along with a strong sense of denial of error on the part of spreadsheet developers probably explains why inspection is so rare in practice today and will be difficult to introduce in the future. In effect, spreadsheet developers are roughly where programmers were in the 1950s and 1960s. Somehow, we must teach new dogs (spreadsheet developers) old tricks.

A final point may also be the most important. As noted at the beginning of the paper, many spreadsheets are very large, containing thousands of cells. For nearly complete accuracy, we would need to greatly reduce observed cell error rates (1% to 5%), which are similar to fault rates in programming, to perhaps one error in ten thousand cells. Our code inspection results, which are consistent with group code inspection studies in programming, suggests that an 80% reduction is about all we are likely to achieve.  Quite simply, even with code inspection, spreadsheets will remain unsafe in the future.
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Figure 1: Hypotheses and Results

	H1
	Groups will detect more errors per spreadsheet than will individuals.
	.009

	H2
	Formula error detection rates for individuals will be higher than omission error detection rates for individuals.
	< .001

	H3
	Formula error detection rates for groups will be higher than omission error detection rates for groups.
	< .001

	H4
	Formula errors will be detected more frequently in short formulas (with four or few elements) than in long formulas for individuals.
	< .001

	H5
	Formula errors will be detected more frequently in short formulas (with four or few elements) than in long formulas for groups.
	< .001

	H6
	For subjects working alone, the estimated percentage of errors found will be greater than the actual percentage of errors found.
	.004

	H7
	For subjects working in the group phase, the estimated percentage of errors found will be greater than the actual percentage of errors found.
	.056
(failed)


Figure 2: The Spreadsheet with Seeded Errors

Table 1: Error Detection Rates by Type of Error
	Cell
	Description of Error
	Yield Alone
	Yield in Groups
	Gain for Groups

	None (a)
	Parental gift omitted from the spreadsheet
	30%
	55%
	83%

	None (a)
	Parking expense omitted from the spreadsheet
	35%
	55%
	57%

	B17
	=11*30. Should be =12*30.
	88%
	100%
	13%

	D20
	=C20*20. Should be =C20*B20.
	85%
	100%
	18%

	E19 (b)
	=ROUND(D19+(1+$D$1),0). D19+ should be D19*.
	47%
	70%
	50%

	F5
	=SUM(F12..F19). Should be =SUM(F14..F20).
	82%
	100%
	22%

	F8 (b)
	=F3=F4-F5+E6+E7. Should be =F3=F4-E5+E6+E7.
	58%
	90%
	54%

	G20 
	=SUM(C20..F20). Should be =SUM(C19..F20). 
	82%
	95%
	16%

	
	OVERALL
	63%
	83%
	31%

	
	
	
	
	

	
	Estimated Percentage of Errors Found
	73%
	86%
	

	
	Average Overconfidence
	16%
	4%
	


(a) Omission Error

(b) Long formula error
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